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The stability question is settled in a nonlinear formulation, The casesofsimple
and nonsimple elementary divisors of the characteristic matrix of a linear sys-
tem have been examined, The real normal form of the Hamiltonian of the lin-
ear problem and the comesponding normalizing transformation have been found
for the second case, In the first case Liapunov instability and stability, while in
the second case instability and formal stability, have been proved as a function
of the coefficients of the Hamilton. function,

1, We consider an autonomous Hamiltonian system with two degrees of freedom,
The coordinates ¢,, ¢; and the momenta p,, p, are chosen such that the point ¢; =
gs = py = py = 0 is an equilibrium position of the differential equation system,
while the Hamilton function is represented in the series form

H=H,+Hy+H + ...+ Hp+... 1.1

where H,, are mth-degree polynomials in the coordinates and momenta, If H, isa
sign-definite function, then by Liapunov's theorem [1] the equilibrium position is stable,
If H, is not a sign-definite function, but stability holds in the first approximation and
the frequencies ©;, @3 of the linear problem are not connected by resonance relations
of up to fourth order, inclusive, then in the majority of cases the stability question is
settled using the Arnol'd-Moser theorem [2, 3],

Suppose that integers ny and nyexist such that 0 <<|ny |+ | ny | <4 and
n®y + nywy = 0 then the Amol'd-Moser theorem is inapplicable and the stability
problem requires a particular investigation, Stability under the resonances ©, = 2w,
and @; = 3w, was investigated by Markeev [4], The aim of the present paper is to
obtain stability and instability conditions under the resonance ®; = @3, as well as to
obtain an expression of these conditions in terms of the coefficients of forms
H,, H;, H,.

The first stage in solving the problem is the determination of the normal form of the
linear system, By analogy with the case of nonmultiple frequencies we could assume
that in the given case the normal form is a Jordan form, However, the differential equa-
tion system corresponding to it is not a canonical one, Let us examine in more detail a
linear system with the Hamiltonian

Hy = 301307 + 013192 + /382092 + cuqiP1 + C1201Pa + (1.2)
c19aP1 t+ CaafeP2 + /2b11Pi® + b1aP1Ps + Ysbaaps® = xq'Hq

The canonical equations of motion of such a system are written as
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By virtue of the multiplicity of the roots of the characteristic equation of the linear sys-
tem (1, 3), it can be written in the following form:

M 202 -0t =10 1.4)

where A, = Ay = i® and Az == A4 == —iw are the roots of the characteristic equa-
tion,

Let Dy (M) be the greatest common divisor of all minors of the defining matrix
(JH — AE) of order k [5]. In the problem being investigated Dy = Dy = D, =1
always, Inaddition Dy = A* 4- 20%A* - ©*. Two cases are possible, depending on
the coefficients a;;, b;;, ¢i;: (1) Dy = A2 + w?, (2) Dy = 1. The invariant
polynomials of matrix (JH — AE) for the first and second cases are, respectively:

B =0y = R+ @ =iy =1and i = (M 4 @}, i =iy =i, = 1.

In the first case the defining matrix has simple elementary divisors and the normal

form iw (¢;p; - ¢2P2) has the real representation

Hy =1/, (p® -+ ©3q,%) — /s (p* + 0%q,?%)

This case is investigated in Sect, 2, In the second case the elementary divisors are not
simple, Then [6] there exists a linear complex canonical transformation P bringing the
Hamiltonian (1, 2) od system (1, 3) to the form

H¥ — io (¢ p* + ¢*pf) + ¢ i (1.5)

A constructive way for determining the matrix of transformation P is indicated in [6],
but the question on the real form of the normalized Hamiltonian is not discussed, Let us
find this form here,

The Hamiltonian (1, 5) can be reduced to the form

Hy, = (q* + %) + @ (1p2 — Gop1) (1.6)

by a linear complex canonical transformation with the matrix

b ib —a —ia
a ia 0 0
1 i
D= 24 T 2a 0 0
b ib 1 i
T 2a? 2a? 2¢  Za

where a and & are any complex numbers, We now apply the transformation N = PD
to the original system with Hamiltonian (1,2) and we choose the numbers ¢ and b such
that the transformation will be real, This can always be done since the A-matrices cor-
responding to Hamiltonians (1, 2) and (1, 6) have equal elementary divisors in the real
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number field [5], The stability of the equilibrium position in the case of nonsimple
elementary divisors is investigated in Sect, 3,

2, Let w; == ®, and let the elementary divisors be simple, The Hamilton function
(1,1) can be reduced by a linear real canonical transformation to the form

=1(p® + 0y — Yo (P2 + 0%q®) + Hy+ Ho+ ...+ Hpy +..0 (1)
= Zﬂ Popgnc Q0 PYDYy V=V + vy + vy + Vi

v=m
We used the Birkhoff transformation [7] in complex coordinates to reduce the forms H,
and H, in expansion (2,1) to normal form; in essence, the normalization carried out
differs in no way from the analogous transformations in 4] for the resonances @, = 2w,
and ®; = 30,. After all, having annulled form H3 and simplified H,, we can reduce
the Hamiltonian (2, 1) to the form (the notation for the variables remains as before)

H = _U)j_ (@:® + P — (g2* + p2?)] + "Cﬂ' (¢ +p?) + (2.2)
- (@2 + P (@ + P

""‘2 22)? -

kzoo"

(192 — P1P2)2 —(q1p2 + 9’2P1)2 1+ lagoe (9192 — P1P2) X
(lez -+ q2py) + -5 (91 + P1*) [Fu120 (91P2 + 22P0) +

L1120 (9292 — Pap2)] + 7 (922 + P2®) [F1102 (1D2 + 92P1) +
Lio2 (9192 — pap2)] + Hy + . ..

32 ®?

3 1 1
C20 = — Tyop0 — 5~ U1,1 + 5 Uz, 2 — 5 Uss — 35— Ug, 7 o5 Us,8

@? @2
€11 = Tuauy + iy, ¢ + 2U3, 3 — 5 Uss 2ug,5 — 2ug, 4+ & Uso

3 1 3w? mz
o2 = — o202 + 5 Us, 5 — Us, 6 + 5~ Us,3 -+ —g Yo, 10 — =7 Us

y 9

1 w@?
Fa002 = 2002 — U, U,y + u?, o Us, 6+ = ua, 5— g~ Us, 10

Laoos = : o 5
2002 = Y00z ~— __2_1;1,3 -+ Vg4 + —8-07’ -~ V3, ¢ + 174, g Us, 10
krizo = 71190 — 5 Ua,1 Uy, g + Uz, 2 — 5 U6
1 ©? ©?
2 Ue T Uy g s
l1120 =y — __l_v +urt v 1 1 w2 w?
120 5 V2,1 T V1,4 3,2“"2“'722,6—TU6,4'—' Z Vst 12 Yo, 8

T 1 o o
102 = Ty1o2 + 5 Us, 2 + Uzs — U5 — Uy, g +-L U, 5+ — a0 — 1,) us,
1 | w? w©?
Loz = Y1102 + 5 5 Ve, 2 1 V2,3 — 205,38 — Vg, 6 — 5~ Us, 5+ 7 Us 10— (5 Us,s
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Uy, i = 2% + YilYy Vi Ty — 'Ijl/z' i=1,...,10)

Za020 = — —‘( 30%hg040 1 Paozo + = hmoo )
Ty111 = ©*hogas + hozao T Ra002 - =5 Pasoo
o202 = — 5~ <3(02h0004 + hogoz + m‘ homo)
Z3002 = 71; (mzhoozz + Pozz0 + hainn + Raooe - —1—2'h2200>
Y2002 = % (“ ®hg12y — Ohygy0 —i‘ v hmm + = hmm)
Zy190 = '!1;_ <30)h0130 + ohygn + — hzuo + —’-h3001>
Y1120 = _/i“( 302031 4 Ra12o — ooy + —5 hnoo)
Zy102 = 'Z— (3°)h1003 + @hoy1p + — h1201 +— hosm)
Y02 = % ( 30t hog13 + hogay — hazos +- ﬁhnmn)
T = — ';—hlozo - 20)2 5 3000, = ——'hooso + —% haoo
Ty = — Ohgoa1 — ';)" haoots Y2 =ho120 + hzmo
T3 = — —;‘honl - "i—hmoz + "2%0; P10y Yz = — —g-hoom + z—i—hozu + % hyin
Ty = — —_‘hOO‘Zl + hluo + - hzoon Yy = — é‘homo - % hion + 5= 2(»3 55 Pa100
T5 = hoooa + hozola Ys = — —;—homz 22)2 hoseo
Zg = R0z + h1200’ Yo = — Whopra — —('O—hozlo
Ty = Roez0 — 0)2 hzoun Y= -m—hlozo o 3000
Ty = hos20 — 3‘ hyo1r — szmo, Ys = hoo21 -+ “(:7 Payyo — o 2001
Zy = — hgo12 + LQ hoazo — o k11015 Yo = %)-houl — ’:)—hmoz + Tj? R 1200
Tyo== — —h0102 + —hoaoo, Y10 = — Pooos + hozon

(O]

In "polar” coordinates ry, I, ¢;, ¢, defined by the formulas
gi — V2risin g, p; = V2 cos g
Hamiltonian (2, 2) takes the form
H == o (ry—r3) -+ caor® - enlila A= cogls® -
2ry7y U 2005 €OS 2 (g 4 (Prz) — Iypoz 8in 2 (@ + @2)] +
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2’1}/2—_3 [k 1120 sin (@) -+ Qo) — I3390 cOS (o1 + )] +
2r2V"17'z [k 1103 8D (@3 + @) + 102 COS (91 + @)l + O (r*)

We denote 4 = 2k 2t B » B= 2Vk%120+ B € =2V Ky + Bia

200
and we suppose that 4 == 0, B 5= 0, C s~ 0. Then, defining the angles 6,, 0,, 6, by
the relations

sin 261 = ZkZmB » sin 92 =- 2llBlm , sin 93 = ZZCU02
c0s 20, = — ._2171’0& , €0sO, = 2 ktlgmo , 0, = 2ka2
we obtain
H = o (r; — 1) + cgon® + eyryre + coeha® + (2. 3)

Aryry sin 2 (@, @y + 6,) + BryV riry sin (g, + g2 + 6,) -+
C’zV’_&_”; sin (‘Pl + @, + 03) + O (r;')

Using the integral H =h = const we decrease the system’s order by two units [8];
the new Hamiltonian is 2gn-periodic in the new independent variable, Since the mo-
tion is being examined in a sufficiently small neighborhood of the origin, we can assume
that r;, r, ~ ¢, where 0 << & <€ 1. Let the initial conditions be such that h ~ g%,
Then, by solving Eq, (2, 3) relative to 7,, we obtain

ro = — Ky (r1, 91, 92) — K, (ry @1 ‘th)v K, = 0 (r")
Ko = — 11— —=ri?[(ca0 -+ €11 + Coo) + ASIn2(91 -+ @ + 0) +
B sin (@1 + @2 + 0,) + Csin (@1 4 @, + 03)]

Here K, is a function 2x- periodic in ¢, and in the new independent variable @y . If
instead of @, we introduce the new angle ¢ = ¢, -+ @5 -+ 0,, and instead of ry the
new momentum r, then the Hamiltonian

K =r*(a+ bsin 2¢ + c¢sin ¢ + d cos ¢) + K* (r, ¢, ¢g, k), (2.4)
K* = 0 (r")

will correspond to the resulting system with one degree of freedom, Here K* is a func-
tion 2g-periodic in ¢ and @2, and

a= -—%—(Czo“i“ €11+ €pa)y, C¢= ——:)- [B cos (6, — 0,) + C cos (83 — 6;)]
1 1 . .
b=——A4, d:_T[Bsm(ez—el)—{—Cs1n(93—61)]

From the equations of motion with Hamiltonian (2, 3) it follows that for sufficiently
small ry and r, the angular variable @, is a monotonic function of time and, consequent-
ly, @ can play the role of time in the stability problem, Thus, as in [4, 8], the stability
investigation of a system with two degrees of freedom has been successfully reduced to
the investigation of a system with one degree of freedom,

Theorem 2,1, If the function @ (¢) = a + b sin 29 - C sin ¢ -+ d cos¢
does not vanish for any ¢, then the equilibrium position under investigation is Liapunov-
stable, If there exists ¢* (0 <C @* < 2m) such that @ (¢*) = 0, while @ (¢* ) 0,
then the equilibrium position ¢; = p; = ( is unstable,

Note 2,1, If there exists ¢* such that @ (@*) = @ (¢*) = 0, then the stabi-



746 B0 S0 DT ow T

lity question is resolved by the higher-order terms in the expansion of the problem'’s
Hamilton function,

Let us first prove the assumption on instability, We note that from the periodicity of
function @ and from the fact that (D" (¢* ) == 0, it follows that if the equation
D (¢) = 0 has roots, then there are at least two of them, We denote the two roots
closest to each other by ¢* and ¢** and we let the root ¢* be such that @ (¢*) =0,
while " (¢*) << (0. We then prove instability with respect to variable » by means
of Chetaev's theorem [9] and of the results of [10]. As the Chetaev function we take

the function V = r2sin W, Y o=/ 28 (p — g% 4+ 8)

where we choose the sufficiently small number § such that there are no other roots of
the function @ (¢) in the neighborhood ¢* — § << @ << @* -} 0 , while the sign of
@’ () is preserved in this neighborhood, As the region ¥V >> 0 we take the region
(r >0, ¢9* — 8 << ¢ <<@* + 8). By virtue of the equations of motion the derivative
of function V with respect to the independent variable ¥z is
v
o=
and this function is positive definite since @’ (¢) << 0 and sin ¥ > 0 in the region
V > 0 ,while for ¢* — 8 <T@ < ¢* the function @ (¢) >0 and cos ¥ >0,
and for ¢* << ¢ << ¢* + § the function @ (p) << Oand also cos ¥ < 0 ; here
the expression within the braces does not vanish either in region ¥V > O or on its bound-
ary, Thus we have proved the assertion on instability when roots of the equation
D (¢) = 0 exist,
To prove stability we pass to the variables the action J and the angle W [11],

Then the generating function of the canonical trasformation r, ¢ — J, W is
2%

2r3 (@ ((P)—gé— cos V' —@’ (¢) sin ¥'}--0 (r"2)

o v dg ¢ do

0 0
we note that A exists when the theorem's hypotheses are fulfilled, In the new variables
the Hamiltonian (2, 4) is expressed as follows:

A2 ;
K, W)= = J* + K*(J, W, g5, h), K*=0(J")
where K* isa 2n-periodic function in the variables W and 2, and is analytic in all
the variables in the region
0< o < J <o R <oy, | Tm W, qo | << ¢4

where c; are real numbers, Since §2 (K — K*) / 8J% == 0, hence, according to [2],
follows the stability of the equilibrium position ¢; = p; == U.

3, The difficulty of investigating stability in the case of nonsimple elementary divi-
sors is, mathematically, that even in the first approximation the variables corresponding
to the different degrees of freedom are not separable, Therefore, we cannot succeed in
reducing the stability investigation to the study of the system with one degree of free-
dom as in the simpler case of linear elementary divisors of the defining matrix, It is
also very interesting that in contrast to the preceding case and to all the investigated
cases of the stability of a systemn with two degrees of freedom, the linear problem is
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unstable because of the presence of terms of the form ¢ sin w? in the general solution,
However, accounting for the nonlinear terms in the equations of motion can lead both
to the stability as well as the instability of the full system [12],

Let the Hamilton function of the problem be represented in the form

1 oo
H = —(¢:" + ¢°) + o (q1p2 — @2p1) + D (O el h) 2 O (3.1)

v=3
The form H, in (3,1) again can be annulled completely and the form H, simplified
by applying the Birkhoff transformation, After some further calculations, more cumber-
some than in the first case, the Hamilton function (3,1) can be reduced to

H =1, (g + ¢?) + o (g2 — ¢:p1) + (3.2)
(P -+ p2) 4 (p® + pa?) + B {q1p2 — qop1) +
C(g + @)+ Hy+ ...
4 = 1/4’52002, B = —4 (lonn + lire2)
C = —1/4 (2cy0 + ¢33 + 2co)
Eao0s = Tgo02 + 3.(tg,10 — U10,0) + 2 (Ug,3 — Uspa) T Use — Uay
Lot = Yeonn — B%10,8 — 4'03,1 + 20g,5 + 2099 + Vs, — U3
Lizos = Yson1 — Ovs 10 — 4v13 4 2056 -+ 2058 - V20 — Vs
Ceo = Tgozo — Uo7 + bugy + uye + gy — Usz — Ugys
11 = Ty 1 4 (Ues — Ugp + Ugys — Use) T 2 (ugs — U T Usy — Upp)
Coz = Tyoa0 T Fa,10 — 4lye — Ugy —Uss + Uy + Usy
Tag0e = Yz (Bhooso + ooze + 3hooos)
Y2011 = s (—hyoas — 3hi00s + 3Pozse + Po11s)
Zz00 = “/a (P2020 — Paooz T Bran — Pozzo + Pozos)

T111 = ~ (Baozo T Faooz + Roszo + Ronos)
Ui,y = ey + fiyp vi,; = eiy; — Jix; ¢ i=1,...,10, Q=0
e = Qy; + Qz, — 2Q%,, fr = —Qz; + Q%, + 2Q%;,
e, = Qyy + 2Q%z,, fo = —Qz, + 2Q%,
€3 = ani f3 = —st
e = Qg — Q (x; — ) + fo = —Qxy — Q* (y, — ys) —
2Q3 (yy — ye) + 6Q%zs, 2Q3 (2, — z4) + 6Qy,
es = Quy — Q (zy — 2ag)+ 4Q%;,  f5 = —Qu; — Q¥ (y, — 2y6)— 4Q%2,
eg = Qyg — Qzs, fo = — Qag — Q%
€7 = Y3Quyy + /0%y — 2/2793!/9 - [z = —1/3Q1, 4—1/992% + %22 Q%2o—
? (27242, 2/27942/10
es = '/3Qys + 2y Q2zy — 2/sQ%;0, fo = —3Qxs + 2/eQ%s + */4Q%y,
ey = /3Qyy + 1/5Q%x10, fo = —1/3Qxe + /3%y,
€10 = /3210, fro = —/3Qry,

xi:xi*/sz yz:yz*/2‘/_§’- (i:i,...,10)
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;¥ = —hge10 — haror + Pozro y* = hogor — Ryzre — hozo1
2,* = —2hy930 — 2hy002s Yo* = — 2ho1z0 — 2ho10
3% = —3hgoz0 — Poorz ya¥ = —hooor — 3hoo0a

zg* = 3hyo00 T Fazoos Ya* = hayeo 1 3hosoo

x5* = 2hye10 + 2hoo10 ys* = 2hyg0 A 2hga,

2¢* = hyg90 — Pyooz + Rons yet = hioir — Porzo + Poroa
7% = Bggeo — Pizoo Y2* = hatoo — Rozo0o

xg* = hgg10 — Arrox — Pemior ¥s* = haoor + Pirre — Pz
Tg* = hyop0 — higos — hown ?/9* = hyorx 1 Pozzo — Por02
Zy0* = Poozo — Poorzs Y10® = Pooz1 — Rooos

Theorem 3,1, If 4 > 0, the equilibrium position is formally stable,If 4 < 0,
the equilibrium position is Liapunov-unstable,

To prove the formal stability we note that by means of an infinite number of stages
of the Birkhoff transformation (possibly divergent) we can reduce the Hamilton function
(3.2) to 1 .
H = (s> + @) + 0 (12 — @aP1) + (° -+ ) [A (p° + poF) + 3o 3)

B (g1ps — qap1) + € (g2 + g9 +

2 haga, (@2 + @25 (p1? -+ P2?)*t(q1P2 — GaP1)™
agtbata=3
A canonical system with Hamiltonian (3, 3) has two formal integrals H == const and
(g1p2 — gap1) = const. Consequently, the expression G = H — o (¢,p2 — GaP1)
also will be a formal integral of the system with Hamiltonian (3, 3), But since the func-

BN Gy Gy = (@ + a) + (0 + ) A (P A pY) + B (@apr —
g2p1) + C (9 - 427
in the expansion
G=G,+G+Gg+ ...+ Gy + ...

is a positive-definite function of its variables ¢y, 2, Py, P2 when A > 0, hence,
according to definition [13], follows the formal stability of the equilibrium position,

To prove the instability we make use of Liapunov’s instability theorem [1], As the
Liapunov function we take the sign-variable function

V = qipy + 2P

The derivative of function V| taken relative to the equations of motion with Hamilton-

052 gy Jat = —(q* + ¢°) + 44 (p* + P+ 2B (@ip2 — @) X
(p® + pd) + O ((q* + g2 + pi® + p*)")

is a negative -definite function of its variables when A4 <C 0, The function V satisfies
all the hypotheses of Liapunov's instability theorem, Thus, Theorem 3,1 has been proved
completely,

In conclusion the author thanks A, P, Markeev for valuable advice and for discussing
the results obtained,
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We introduce the concepts of the degree and the order of synchronism on the basis
of a mathematical model of the emergence of synchronization in the form of an
asymptotically stable integral torus in the phase plane, We investigate the exist-
ence conditions for synchronisms in a dynamic system described by differential
equations with rapidly rotating phases, As an application we examine synchron-
isms in a system of quasi-Hamiltonian objects, In recent years the phenomena

of synchronization and resonance in dynamic systems have been subjected to in-
tensive study, in particular, in connection with the question of the synchronization
of satellites [1, 2] and of mechanical vibrators [3], On the mathematical side
the appearance of synchronization is closely connected with the theory of differ-
ential equations with rapidly rotating phases, Here in the first place we must



