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The stability question is settled in a nonlinear formulation. The casesofsimple 
and nonsimple elementary divisors of the characteristic matrix of a linear sys- 

tem have been examined. The real normal form of the Hamiltonian of the lin- 
ear problem and the corresponding normalizing transformation have been found 

for the second case. In the first case Liapunovinstability and stability, while in 

the second case instability and formal stability, have been proved as a function 

of the coefficients of the Hamilton. function. 

1. We consider an autonomous Hamiltonian system with two degrees of freedom. 
The coordinates or, qs and the momenta pl, pa are chosen such that the point Qr = 

Qs = PI = Pa = 0 is an equilibrium position of the differential equation system, 

while the Hamilton function is represented in the series form 

H = Hz + H8 + H, + . . . + H, + . . . 0.1) 

where H, are mth-degree polynomials in the coordinates and momenta. If Ha is a 

sign-definite function, then by Liapunov’s theorem [1] the equilibrium position is stable. 

If H, is not a sign-definite function, but stability holds in the first approximation and 
the frequencies ot, aa of the linear problem are not connected by resonance relations 

of up to fourth order, inclusive, then in the majority of cases the stability question is 
settled using the Arnol’d-Moser theorem [2, 31. 

Suppose that integers n, and n2 exist such that 0 < 1 n, 1 j- 1 n, 1 \< 4 and 

nlal + 4~s = 0 then the Amol’d-Moser theorem is inapplicable and the stability 

problem requires a particular investigation. Stability under the resonances or = 2~s 

and @I = 30, was investigated by Markeev [4]. The aim of the present paper is to 
obtain stability and instability conditions under the resonance o1 = w2, as well as to 

obtain an expression of these conditions in terms of the coefficients of forms 

Hs, H,, &. 
The first stage in solving the problem is the determination of the normal form ofthe 

linear system. By analogy with the case of nonmultiple frequencies we could assume 

that in the given case the normal form is a Jordan form. However. the differential equa- 
tion system corresponding to it is not a canonical one. Let us examine in more detail a 
linear system with the Hamiltonian 

Hz = ‘lsarrq12 + alsq1q2 + ‘lsazsq22 + criqtpt + claqrps + (1.2) 

ca,qspP, + cszqzpz + ‘l&trPr2 + braprps + ‘/2b22~2~ ,= ‘MHQ 

The canonical equations of motion of such a system are written as 
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dqJdt==JHq (1.3) 

Q1 all (112 CIl Cl2 0 0 I 0 

9==; I 
a12 a23 021 C22 0 0 0 1 

I1 =: Cl1 c21 h 11 bn , J- -1 0 0 0 
PZ c12 (“‘2 612 bzz 0 -10 0 

By virtue of the multiplicity of the roots of the characteristic equation of the linear sys- 

tem (1.3), it can be written in the following form: 

A4 + 2@2h2 -i- 04 = 0 ('1.4) 

where a, = A, = io and h, = A4 = - io are the roots of the characteristic equa- 

tion. 
Let Dk (h) be the greatest common divisor of all minors of the defining matrix 

(JH - hE) of order k [5]. In the problem being investigated Do = Dr = Ds = 1 
always. In addition D4 = h4 t- h2i2 + m4. Two cases are possible, depending on 

the coefficients aii, bij, Cij: (1) D, = h2 + w2, (2) D, = 1. The invariant 
polynomials of matrix (JH - hE) for the first and second cases are, respectively: 

11 ' = i, = k2 + w2, i, = i, = 1 and i, = (k” $- a2)2, i, = i, = i, = 1. 
In the first case the defining matrix has simple elementary divisors and the normal 

form io (qIpl $- qzp2) has the real representation 

H, = l/z (~12 -k 02q,2) - l/2 (~2~ i- o%,‘) 
This case is investigated in Sect. 2. In the second case the elementary divisors are not 

simple. Then [6] there exists a linear complex canonical transformation P bringing the 

Hamiltonian (1.2) od system (1.3) to the form 

H,* :p io (ql*pl* t- qa”p2* ) i- h* PI* (1.5) 

A constructive way for determining the matrix of transformation P is indicated in [6], 

but the question on the real form of the normalized Hamiltonian is not discussed. Let us 
find this form here. 

The Hamiltonian (1.5) can be reduced to the form 

H2 = l/2 (q12 + q22) + co (qlpz - qzpl) (1.6) 

by a linear complex canonical transformation with the matrix 

D= 

b ib -a - in 

0 in 0 0 

1 i 
2a -2a 0 0 

b ib 1 i 

-5 G -g -Zn 

where a and b are any complex numbers. We now apply the transformation N = PD 

to the original system WithHamiltonian (1.2) and we choose the numbers a and b such 
that the transformation will be real. This can always be done since the h-matrices cor- 
responding to Hamiltonians (1.2) and (1.6) have equal elementary divisors in the real 
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number field [5]. The stability of the equilibrium position in the case of nonsimple 
elementary divisors is investigated in Sect. 3. 

2. Let 01 = 02 and let the elementary divisors be simple. The Hamilton function 
(1.1) can be reduced by a linear real canonical transformation to the form 

H = ‘/a (PI2 + oZqrZ) - l/i? (PL? f 02q2z) + Ha + H* + - * - + H, 4 * * * (2.1) 

H,= 
z: hsvw, t$!M%‘r Y = v1+ vp -i_ v3 + v4 

"==tS 

We used the B~k~off transformation n] in complex coordinates to reduce the forms Ii; 
and H4 in expansion (2-1) to normal form ; in essence, the normali~tion carried out 
differs in no way from the analogous transformations in [4] for the resonances w1 = 20, 
ando, = 30,. After all, having annulled form Ha and simplified H4, we can reduce 
the Hamiltonian (2.1) to the form (the notation for the variables remains as before) 

H = + [((rr2 -I” PC) - (G + &*)I t +- (qr2 + P12)2 + 

+- (412 + P12)(Q22 -t P2Y + 5 (q22 Ji- P22)2 + 

9 I(QlQ2 - P1PaY - (&Pa + Q2Pd21 + 12002 (!I142 - PrPz) x 

(41Pz + Q2Pd + + (412 + PI21 [ha0 ohP2 + Q2P3 -I- 

(2.2) 

Ill** (4142 - PlPJl + + (4t2 + Pa2) ~&Yz (QlPz + !!PPlf f 

I1102 (wa - plp2)l + H, + . . . 

c20 = -54 
1 i 

- 52020 - 2 l,l+ ~"2,2-~u4,4 
309 01 

I- 
8 u7,7+ X%,8 

Cl1 = x1111 + 2u 1,6 + 2u3,3 - g %,s - 2U2,6 - 2u4,4 -k- ~~s,9 

- xh2@2 + +%,6-&3,6t 

369 
CO2 = +u 3,3 c ~%O,lO - -g-%,s 

k 1 i 
2002 = 22002 - zu1,3 - lt2,4 + 7,s+U3,6+~=4,5- $ u8, 10 

1 1 
2002 = y2002 - -i_% 3 + v2,4 + &,s 

1 a= 
- %,6 + Tv4,5 - -$j- v6,16 

k = 
1120 

1 1 
x1120--g- u2,1+"1,4+~3,2-~~2,6- 

1 0% 
:!%4--J-u,,,+ pus,* 

I = 

1120 y11*0 + q4-t v3,2 - - 

- +2,1 1 -&*4 
TUZ,B 2 

02 
- -i;-v&7+ 

h-1162 = %102 + -& %3,2 + ui,s - Z&,3 -* %,6 i- --$6,6+ 
02 02 

TU 9,lO - 1?, us,9 

1 = 

2 

1102 Ylloa -+ 2 %,2 + &'2,3 v4,6 v6, 1 - &,3 - - + 5 + 02 - 4 %, 10 +- %, 9 
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Ui, j = XiXj + ZJiyj, Vi, i 7y “iyj - Xj,l/f Ci = I 7 *. . > lo) 

x2020 = - +( 3:lPh 
.? 

0040 -t, ho20 + y+4')00 I 
I 

1 
Xlllll = W2hoo22 + ho,*0 + ~a002 f- 02 h2200 

x0202 = - f (30ZhDoD4 + ho202 -k +o,oo) 

1 
52002 = 4 

! 
~2hoo22 -!- ho220 f hllll 4 h2002 i- +$2200) 

Y2002 = + - WhOl2l_ 
( 

1 1 
6012 -t w &lo + w h2lOl 

) 

51120 = $ ( 3uhon0 4 @hIon + -;3;- h2llO + -g3OOl) 

y1120 = $ (- 3~2hoo31 + bzo - h2011$ $ ho0 
) 

x1102= f (3oh 1003 + ~hOll2 4 ;h,ol + +0310 
I 

YllO2 = $ 
( 
- 3m2hoo13 + ho211 - ho2 + & hxm) 

Xl = - $ ho*0 - & h3000, Y1= -g- ho,,, + & h2OlO 

x2 = - whoozl- -&h2001, Y2 =ho120 -!- $ h2100 

x3 = - +holll - +hloo2 + & h200, Y3 = - -g hOOl2 + &ez11+ & hll 

x4 = - -p0021+ &Ill0 + & h20017 ~4 = - $0120 - ; boll + & h2,oo 

55 = q ho003 + & ho2017 ~5 = - +ho,oz - & hosno 

ze = hlooz + -p ‘h 
i 

12007 Y, = - ~f~oon - ~~0210 

~7 = hoo3o - $zolo, Y7 = +h ‘h 1020 --g 3000 

1 
q, = w hol2o - w ‘h 

1 
loll - >h2100, Y, = ho021 + o2 ‘h 

1 
1110 - o8 boo1 

~9 = - h.0012 + 7 * ‘h 
1 

0210 - >hllo~r 
1 1 

~9 = =holn - Fh~oo2 + - is hzoo 

& holo + $ h0300r 
1 

qor= - Y,, = - ho003 + o2 ho, 

In “polar” coordinates rl, r2, rpl, ‘p2 defined by the formulas 

(li ~- 1/K sin vi, pi -= ~/2ri COS (pi 

Hamiltonian (2.2) takes the form 

H == w (rl - r2) -/- czor12 -I- cllrlr2 -{m co2r2* + 

2r,r2 UC 2002 Cm 2 (cpl + ~2) - ~2002 Sin 2 (cpl -t- cp2)I + 
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W&G [k 112o sin (cpl + cp2) - 4120 ~0s hl + cp,)l + 
2'2IG 4102 sin (cpl + cp2) + La2 ~0s (cpl + c~~).l + 0 (ri"t) 

We denote A = 21/kh2 + l&,,, , B = 21/k:,, + lf,,,, C = 2v-i 
and we suppose that A # 0, B # 0, C # 0. Then, defining the angles 8,, O,, 8, by 
the relations 

Shoos 
sin 28, = A , sin e2 = 

2111zn 211102 
--7 B 

sin 0s = c 

cos 2e1= 2laooa 
--, 

we obtain 
A 

H = 0 (rl - r2) + c20r,2 -I- cllrlr2 + co2rz2 -t (2.3) 

Ar,r2 sin 2 (cpl+ cp2 + 0,) + Br,I/G sin (cpl + cps + 02) + 

Cr,I/rZ sin (cpl + ‘pz + 0s) + 0 (r/Y 

Using the integral H = h = const we decrease the system’s order by two units [8]; 

the new Hamiltonian is 2n-periodic in the new independent variable. Since the mo- 

tion is being examined in a sufficiently small neighborhood of the origin, we can assume 
that r,, r, N e, where 0 < E < 1. Let the initial conditions be such that h - ~9. 
Then, by solving Eq. (2.3) relative to r,, we obtain 

r2 = - K. (k cp~ cp2) - K, (r17 ‘Pi, ~,h), K1 = 0 (rP) 

Ko= -rl- $r12[(c20 + CII+ ~02) + Asin2(cp1+ (pz + 01) + 

Bsin(rpl -i- (~2 + 02) + Csin(cpl + '~2 + edI 

Here K, is a function 2z- periodic in ‘pl and in the new independent variable cp, . If 
instead of ‘Pl we introduce the new angle cp = ‘pl f q2 + 8,, and instead of rl the 

new momentum r, then the Hamiltonian 

K = r2 (a f b sin 2cp + c sin cp -I- d cos cp) + K* (r, cp, qe, h), (2.4) 

K”r = 0 (r‘lz) 

will correspond to the resulting system with one degree of freedom. Here K* is a func- 
tion 2n- periodic in cp and ‘p2, and 

a = -+20 + Cl1 + C02)r cl-; [B cm (e, - 0,) + c cos (0, - e,)] 

b=-_dA, d = - & [B sin (0, - e,) -+ C sin (e, - &)I 

From the equations of motion with Hamiltonian (2.3) it follows that for sufficiently 
small rl and r, the angular variable ‘p2 is a monotonic function of time and, consequent- 

ly, ‘p2 can play the role of time in the stability problem. Thus, as in [4, 83, the stability 
investigation of a system with two degrees of freedom has been successfully reduced to 
the investigation of a system with one degree of freedom. 

Theorem 2.1. Ifthefnnction (P(q) = a+bsin2~+Csincpfdcos~ 
does not vanish for any rp, then the equilibrium position under investigation is Liapunov- 
stable. If there exists ‘p* (0 \( rp* < 2n) such that CD (v* ) = 0, while CD’ (cp* )# 0, 
then the equilibrium position pi = pi = 0 is unstable. 

Note 2.1. If there exists cp” such that 0 (cp*) = @’ (rp*) = 0, then the stabi- 
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lity question is resolved by the higher-order terms in the expansion of the problem’s 
Hamilton function. 

Let us first prove the assumption on instability. We note that from the periodicity of 

function @ and from the fact that (11’ (cp* ) =-~L 0, it follows that if the equation 

@ ((I;) = 0 has roots, then there are at least two of them. We denote the two roots 

closest to each other by q:” and (1 * * and we let the root cl* be such that @ (q* ) = 0, 
while d)’ (q* ) < 0. We then prove instability with respect to variable I‘ by means 

of Chetaev’s theorem [9] and of the results of [lo]. As the Chetaev function we take 

the function 

where we choose the sufficiently small number 6 such that there are no other roots of 

the function 0 (v) in the neighborhood cp* - 6 ( cp < ‘p* -I- 6 , while the sign of 

a,’ (cp) is preserved in this neighborhood. As the region F’ > 0 we take the region 

0. > 0, ‘p* - 6 < cp < ‘p” + 6). By virtue of the equations of motion the derivative 
of function v with respect to the independent variable (Ee is 

dV - = 2r3 (CD (‘p)Gcos Y-@‘(cp)sin Y?}+O (r’,‘) 
d% 

and this function is positive definite since CD’ (cp) < 0 and sin Y > 0 in the region 

V > 0 , while for ‘p* - 6 < q < ‘p* the function @ (cp) > 0 and cos Y > 0, 
and for ‘p* < ‘p < cp* + 6 the function d> (cp) ( 0 and also cos Y < 0 ; here 
the expression within the braces does not vanish either in region V > 0 or on its bound- 

ary. Thus we have proved the assertion on instability when roots of the equation 

CD (cp) = 0 exist. 
To prove stability we pass to the variables the action J and the angle I%’ [ 111. 

Then the generating function of the canonical trasformation r, cp -+ J, bf’ is 

we note that M exists when the theorem’s hypotheses are fulfilled. In the new variables 
the Hamiltonian (2.4) is expressed as follows : 

K(J,W)- _ $ J” -\- K” (J, W, (p2, h), 

where K* is a &-periodic function in the variables 6t 

the variables in the region 

K* = 0 (J‘k) 

and ~1 2, and is analytic in all 

where Cj are real numbers. Since a2 (K - K* ) / dJ2 # 0, hence, according to [2]. 
follows the stability of the equilibrium position Qi = pi -~~ (1. 

3, The difficulty of investigating stability in the case of nonsimple elementary divi- 
sors is, mathematically, that even in the first approximation the variables corresponding 

to the different degrees of freedom are not separable. Therefore, we cannot succeed in 
reducing the stability investigation to the study of the system with one degree of free- 
dom as in the simpler case of linear elementary divisors of the defining matrix. It is 
also very interesting that in contrast to the preceding case and to all the investigated 
cases of the stability of a system with two degrees of freedom, the linear problem is 
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unstable because of the presence of terms of the form t sin or in the general solution. 
However, accounting for the nonlinear terms in the equations of motion can lead both 
to the stability as well as the instability of the full system [ 121. 

Let the Hamilton function of the problem be represented in the form 
00 

(3.1) 

The form H3 in (3.1) again can be annulled completely and the form H4 simplified 
by applying the Birkhoff transformation. After some further calculations, more cumber- 
some than in the first case, the Hamilton function (3.1) can be reduced to 

1,011 = 
1 11oa = 

c20 = 

Cl1 = 

H = ‘/2 (q12 + q22) + 0 (wz - wd -t 
(~1~ + ~2~) I-4 (~1~ + ~2~) + B iw2 - qzpl) + 

C (q12 + q22)l + H, + . - . 

A = ll4k2002, B = --l/4 (I2011 + k,2) 

c ‘= -l/4 (2c20 i- Cl1 + 2co2) 

k 2002 = 22002 + 3.(%,10 - h,9) + 2 b2,3 - u3,2) + U3,8 - 

y2011 - bo,3 - 47J3,l + 2%,2 + 2v9,9 + 2’2,2 - us,3 

y2011 - 6~~0 - 4771,3 + 2% + 2v9,9 + v2,2 - v3,5 

x2020 - %o,, + 4US,l + Ul,B + u9,3 - us,2 - u4,3 

X111, + 4 (u9,3 - %,9 + u4,3 - u3,4) + 2 (% - %,6 + U2,l - 

co2 = z2020 + %,lO - 4”1,0 - %,l -us,9 + u2,6 + u3,P 

2 2002 = l/2 (3aoo40 + ho,22 + 3hooo4) 

y2011 = l/4 (-ho,, - 3hloo3 + 3ho130 + holl2) 

X2020 = ‘/, (h,o,o - h,oo, + bll - ho220 + ho202) 

x1111 = - (h2o2o + h2oo2 + ho220 + ho202) 

Ui,j = eixj + fiyjt Vi,j = eiyj - fixj (i, i = 1, . . . . IO), C2 =0-l 

e, = &jl + Q2x2 - 2Q3y3, fl = -Qx, + Q2y2 + 2Q3x3 

e2 = Qy, + 2a2x3, f2 = -Qx2 + XJsy, 

e3 = Qy,, f3 = -Qx, 

- 

(3.2) 

U6,3 

%2) 

e4 = Qy, - Q2 (Xl - x3) + f4 = --5)x4 - Q2 (.?/I - y5) - 

2Q3 (~2 - ye) + 6Q4x3, 2Q3 (~2 - X6) + 6Q4y3 

e5 = Qy, - Q2 (x3 - 2x,)+ 4wy,, fj = -Qxs - s-i2 (y2 - 2y,)-44523x, 

e0 = Qy, - Q2x3, f4 = - Qx, - Q2y3 

e7 = l/3sZy, + l/9Q2x, - 2/2,Qsy9 - f7 = -l/352x, P/9523y9 + 3j2J23xg-- 

2/27Q4x1o, 2127Q4Ylo 

e, = ‘f3QY3 + “Is Q2x9 - 2/9Q3ylo, fs = --‘l,Qx, + 2/9Q2y, + 2/&3x,, 

e9 = 1/3Qyg + ‘/3522~107 f9 = --1/3Qx9 + ‘/3Q2y,o 

elo - - 1/3QY,ot fl0 = -‘/3Q’10 

Xi=xi*/2VZ yi -yi*/21/? (i=l, . . ..lO) 
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Xl * = -h,OlO - h,lOl + h0210? 
52 

*= -2h 1020 - J%ooz, 

J:?" = -3~00,o - h0012, 

xq* = 3h,ooo + 42007 

z;* = 2h,,l, + 2h0210, 
&3* = h,,,, - 4002 + hml? 

Q* = ~,ooo - h200? 

%* = ha,,, - &lOl - hoslot 

%i* = h,o,o - boo2 - homr 

210 
"zh 

0030 - h 0012~ 

y1* = ho01 - ~~I,,, - ho201 
j/2* = - 2ho120 - 2h.0102 

y3* zz - h 0021 - 3hooo2 

ya" _-_. boo + 3ho,oo 
ye* == 2hTool i- 2hOvo1 

ya * = h,,,, - ho,,,*+ ho,,, 

Y7 * = boo - ho,,, 

y,* = hmo, + ho - ho201 

ys* = ho,, i- h,x,o - ho,oz 

!/IO * -= ho,,, - ho003 

Theorem 3.1. If A > 0, the equilibrium position is formally stable. If A < 0, 
the equilibrium position is Liapunov-unstable. 

To prove the formal stability we note that by means of an infinite number of stages 
of the Birkhoff transformation (possibly divergent) we can reduce the Hamilton function 

(3.2) to 
Ii = -&(‘II? + 4S2) f w (QlP2 - Q2Pd -t (PI" + P22) [A (PI2 + P22) 4-(3'3) 

B(w2- Q2Pd f C(c71" + c122)1 + 

fji hwdq,2 + Q~?=~@I* 4- ~2*~(q~p2 - ~2~~~~ 
ari-~*+K?=3 

A canonical system with Hamiltonian (3.3) has two formal integrals H = Cons% and 

(q& - ~$1) = const. Consequently, the expression G sz H - w (9~s - qspl) 
also will be a formal integral of the system with I-Iamiltonian (3.3). But since the func- 

tion G2 + G, =; l/s (412 + qs2) + @rs + ~22) IA (~12 + PZ”) + B Wt - 

q2pJ + c (912 -i- Qa2N 

in the expansion 
G = G2 + G4 -t 66 + . . . + Gzm + . . . 

is a positive-definite function of its variables ql, q2, pz, p2 when A > 0, hence, 
according to definition p3], follows the formal stability of the equilibrium position, 

To prove the instability we make use of Liapunov’s ins~bili~ theorem [l]. As the 

Liapunov function we take the sign-variable function 

v = QlPl + 92P2 

The derivative of function v, taken relative to the equations of motion with Hamilton- 

ian (3*2) dV / dt = -(q12 + q22) -t- 4A (p12 -i- pa’)’ + 2B (qlpz - q& r; 
(p? + p22) + 0 ((Sl" + 422 + PI2 + P22m 

is a negative-definite function of its variables when A < 0 . The function V satisfies 

all the hypotheses of Liapunov’s instability theorem. Thus, Theorem 3.1 has been proved 
completely. 

In conclusion the author thanks A. P. Markeev for valuable advice and for discussing 
the results obtained. 
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We introduce the concepts of the degree and the order of ~nc~onism on the basis 

of a mathematical model of the emergence of synchronization in the form of an 

asymptotically stable integral torus in the phase plane. We investigate the exist- 

ence conditions for syncbronisms in a dynamic system described by differential 
equations with rapidly rotating phases. As an application we examine synchron- 
isms in a system of q~si-Hamlltonian objects. In recent years the phenomena 
of synchronization and resonance in dynamic systems have been subjected to in- 

tensive study, in particular, in connection with the question of the synchronization 
of satellites [l, 21 and of mechanical vibrators [3]. On the mathematical side 
the appearance of synchronization is closely connected with the theory of differ- 
ential equations with rapidly rotating phases. Here in the first place we must 


